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LETTER TO THE EDITOR 

An order parameter for networks of automata 

Henrik Flyvbjerg 
The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen 
0, Denmark 

Received 16 May 1988 

Abstract. An exact polynomial equation is given for the size of the stable core of networks 
of automata with random connections. When the connectivity K of a network equals 1, 
2, 3, 4 or 5 this equation is exactly solvable. It is found that the size of the stable core is 
an order parameter for a phase transition well known from Kauffman’s model. A new 
derivation of critical parameter values follows. The phase structure is found to be indepen- 
dent of the updating scheme used in the dynamical law for the network. 

The dynamics of networks of formal neurons, spin glasses at low temperature, and 
other networks of automata have received much attention recently. The simplest 
networks consist of N binary variables ui = 0,1, which evolve in discrete time according 
to 

Different types of networks are distinguished by the way the functions and the 
connections j , (  i), . . . , j , (i)  are chosen. For neural networks 5 is typically a threshold 
function of a linear combination of its arguments with the threshold and the weights 
of the linear combination carrying the memory. For the Hopfield model K = N [ 1,2], 
but so-called diluted models with K << N and randomly chosen connections 
j , (  i), . . . , j , ( i )  have also been studied with success [3-51. In Ising spin glass relaxation 
dynamics f ;  is again a threshold function of a linear combination of its arguments. 
The linear weights are random numbers, usually with a symmetry restriction. K = N 
for the Sherrington-Kirkpatrick’model [6] and K << N for diluted models [7]. In 
Kauffman’s genetic model for metabolic stability and cell differentiation in embryonic 
development K << N, and for each value of i the function f; is chosen at random, as 
are the connections j , (  i ) ,  . . . , j , ( i )  [8-lo]. 

Diluted and randomly connected networks are collectively characterised by finite 
connectivity K << N and randomly chosen connections ( j , (  i ) ,  . . . , j ,  ( i ) ) ,  i = 1, . . . , N. 
All such networks are to some extent solvable in the thermodynamical limit N + 00 

when K is kept fixed at a finite value [3-5,7, 11-15]. In this letter we show how one 
can compute the size of the stable core? of such networks. We give an exact equation 
for the transient time evolution of the size of the stable core, and we demonstrate that 
the size of the stable core at time infinity is an order parameter for a second-order 
transition between phases characterised by either ‘chaotic’ or ‘frozen’ dynamics of the 
network. This phase transition has previously been determined for Kauffman’s model 
from equations for the time evolution of overlaps between pairs of configurations 
[ 1 1- 131. 

t Defined below. 
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The stable core is the set of variables ui which develop in time to a constant value 
that is independent of the initial configuration [16,17]. We denote its relative size by 
s, i.e. its absolute size is Ns. 

In order to discuss how the stable core acquires its size, we introduce ‘the stable 
core at time t ’ ,  meaning those variables ai which at time t have attained ‘stable’ values. 
A ‘stable’ value is a value that remains constant for all later times and is independent 
of the initial configuration. 

Let s ( t )  denote the relative size of the stable core at time t. Then it is clear that 
s( t )  is non-decreasing. It is also clear that s( 1) = p K  ; any variable U, updated with a 
constant function 1; has reached its stable value after one update, no matter what the 
initial configuration was, and this is the case for only such variables. At any time t + 1 
there are K + 1 mutually exclusive reasons that a variable U, may have attained its 
stable value. 

(0) ui is updated with a function f; which depends on variables (uj,(,), . . . , ujK(,))  
that all are in the stable core at time t. Since j K  ( i )  was chosen at random, this situation 
occurs with probability s ( t ) K .  

(1) U, is updated with a function J ;  which depends on variables, of which all but 
one are in the stable core at time t. fi happens to be a function which is independent 
of its one variable outside the stable core, when its K - 1 variables in the core have 
their ‘stable’ values. This situation occurs with probability 

Ks( t ) “ - ’ (  1 - s( t ) ) p ,  
where p ,  is the probability that a function f;: in the network for given values of K - 1 
of its variables is independent of its Kth variable. 

( k )  U, is updated with a function f; which depends on variables, of which all but 
k are in the stable core at time t .  J happens to be a function which is independent of 
its k variables outside the stable core, when its K - k variables in the core have their 
‘stable’ values. This situation occurs with probability 

where pk is the probability that a function J in the network for given values of K - k 
of its variables is independent of its other k variables. 

( K )  etc. 
Since the relative size s( t + 1) of the stable core at time t + 1 is also the probability 

that a variable ui belongs to it at that time, we can sum the probabilities above to an 
equation that gives s( t + 1) as a function of s( t ) :  

where p o =  1. Equation (2) and its consequences are the main result of this letter. 
s ( t )  increases with time according to (2) until the limit value s is reached. s is 

found by setting s( t + 1) = s( t )  = s in (2): 

Equation (3) is a stationarity condition for the time evolution of s ( t ) .  It may also be 
read as a self-consistency condition on the size of the stable core at time infinity. When 
read this way, the K + 1 reasons given above may be illustrated as in figure 1. 

s = P ( s ) .  (3) 
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Figure 1. Symbolic illustration of (3).  

Clearly s = 1 solves (3) for any values of pl , . . . , p K .  For K > 1 division of (3) by 
1 - s gives 

Equation (4) is also solved by s = 1 provided 

pl = 1 - 1/K. (5) 

We shall soon see that this is a critical condition for the network. 
For K = 2, (4) is linear in s and is solved by 

P2 
S =  

1-2Pl+P2' 

This solution is less than or equal to 1 for pl less than or equal to 3. For p1 = 3- E, 

equation (5) gives s = 1 - O( E ) ,  i.e. p1 = 3 is a critical value with critical exponent 1 for 
4 P l ) .  

For K = 3 ,  (4) is a quadratic equation in s and is solved by 

For p ,  = 3, (5) gives s = 1. The critical exponent for s(pl) is 1, except when p2 = f ;  then 
the exponent is i, assuming p3 > 0. 

For K = 4 and for K = 5 ,  (4) is a cubic or quartic equation in s, and therefore may 
be solved exactly for s in these cases also. We do not give the results here, because 
they are rather complicated expressions, which we shall not need. 

For any positive integer value of K we have P ( 0 )  = p K  and P'(1) = K ( l  -pl) .  
Hence, if p K  > 0 and p ,  < 1 - 1/  K ,  there is a second solution to (3) in the interval 
[pK, 13 besides the solution s = 1 (see figure 2). When there is more than one solution 
to (3) in the interval [0, 11, we must return to (2) to pick out the relevant solution. 

The evolution described by (2) is an iterated map. Figure 2 shows that the smallest 
of the solutions to the corresponding fixed-point equation (3) is attractive, and hence 
the relevant one. The two solutions shown change roles at the value for pl given in 
(5), which is therefore the critical condition. The last statement is of course valid only 
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Figure 2. Graphical representation of (2) and (3) .  The dotted curve is a typical graph for 
P ( s )  for pI < 1 - 1/ K .  The broken curve is a typical graph for P ( s )  for p ,  > 1 - l /  K .  The 
curves are for the case K = 3: p = 0.7 (dotted) and p = 0.9 (broken). 

when P ( s )  behaves qualitatively as shown in figure 2, i.e. (3) has at most two solutions 
in the interval [0, 11, and P"(l)>O when ( 5 )  is satisfied. In that case ( 5 )  is the locus 
in parameter space of a second-order phase transition. Figure 2 is based upon the 
following example. 

Example. Choose the functions J ;  randomly among all Boolean functions, but with a 
bias such that J;(ul,. . . , uK) = 1 with probability p andJ;(u, ,  . . . , uK) = 0 with proba- 
bility 1 - p  independently for each of the 2K possible input configurations (U1, . . . , uK). 
This is a variant of Kauffman's genetic model for metabolic stability and cell differenti- 
ation in embryonic development [&lo]. It gives P k  = p Z k  + (1 - p ) 2 k  and the critical 
value for p is 

The symmetry with respect to p = 4 in (7) is due to the equivalence between the values 
0 and 1 for U. 

A subtlety: P k  was defined essentially as the probability that a function of k variables 
is a constant function. While (2) is valid for any value of N, the value for P k  given 
above is correct only if the k variables are independent. This is the case for N = CO, 

but not for finite N. A simple example is provided by the case k = 2: the function XOR 

is constant, if its two arguments happen to be the same variable, thus contributing to 
p 2  with a term of 0 ( 1 / N ) ,  the probability that two randomly chosen inputs to XOR 

are identical. 
Figure 3 shows the size s of the stable core as a function of p in the case K =3. 

We see two phases: the frozen phase characterised by s = 1 forp > peril = 0.788 67 . . . and 
the chaotic phase characterised by s < 1 for p < pcrit .  The name for the frozen phase 
is self-explanatory: almost all spins are in the stable core. Whatever the initial configur- 
ation was, after a finite time these spins become constant; they freeze. In the chaotic 
phase a finite fraction of all spins are not in the stable core. After a finite time the 
evolution of a spin configuration is cyclic with a period that grows with N as 
O(exp(a(K)N))  [8-lo]. Consequently, for N + CO the limit behaviour is not cyclic in 
time, but chaotic. 

pc,, l=;[l*(1-2/K)1'2] for K 2 2 .  (8) 

Another example. The case K = 1 is shown to be exactly solvable and studied extensively 
in [13, 141. 
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Figure 3. The size of the stable core as a function of p in the case K = 3. 

For given connectivity K each function f; can be chosen in 22K different ways. In 
the most general situation the choice is characterised by 22K - 1 parameters, deriving 
from the 22K probabilities that a functionj is chosen equal to each of the 22K functions 
possible. These 22K probabilities sum to 1, leaving 22K - 1 free parameters. The 
(22K - 1)-dimensional parameter space is partitioned in two regions by a surface given 
by ( 5 ) .  Parameter values in the region having p ,  > 1 - 1/K result in frozen behaviour 
in the network. The other region corresponds to chaotic behaviour. 

The time evolution in (2) is a result of the ‘synchronous’ or ‘parallel’ updating of 
the variables chosen with ( l ) ,  but the self-consistency equation (3) for the relative size 
of the stable core at time infinity is independent of the particular time evolution chosen 
with (1). Had we instead chosen ‘sequential updating’, or ‘random sequential updating’, 
or any other algorithm that sooner or later will update any variable in the network, 
then (3) would still be valid and consequently so would the phase structure just found. 
Thus, the phase structure found above is independent of the updating scheme. 

We have already seen that the phase structure found above is independent of the 
values of p 2 ,  p 3 ,  . . . , p K  as long as (3) has at most two solutions in the interval [0,1], 
and P”( 1) > 0 when ( 5 )  is satisfied. 

We conclude that the phase structure of a randomly connected network of automata 
is essentially determined by the values of p ,  and K. 

The recursive reasoning applied here to the size of the stable core has also been 
applied to the probability distribution for the average value of spins outside the stable 
core [15]. 

I have benefited greatly from discussions with Bernard Derrida. 
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